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Abstract

Effects of fiber-matrix interfacial debonding on the attenuation and speed of antiplane shear wave propagating in
fiber-reinforced composites are investigated. A probabilistic approach is proposed based on the scattering analysis of a
single representative fiber from randomly distributed fibers with random interfacial cracks. The average total cross-
section of the representative fiber is obtained using assumed probability distributions, and then the causal differential
method is applied to calculate the effective wave speed and coherent attenuation. For a composite with low fiber volume
fraction, the results are compared with those from other theories. When the mean crack size exceeds a certain sub-
tending angle, the interfacial debonding affects significantly dynamic behaviors of the composite. The attenuation
changes mainly in low frequency region quite sensitively to the variance of the crack length, whereas the variation of
wave speed takes place in the whole frequency range considered. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the mechanical behavior of fiber-reinforced composites is influenced significantly by
the fiber—matrix interfacial bonding quality. The partial debonding due to insufficient fiber—matrix adhesive
force can cause interfacial arc-shaped cracks whose orientation and size distributions are random. The
interfacial debonding is inevitable in the ceramic fiber—-metal matrix composites because of the inherently
poor adhesion between the metal and the ceramic. It has been reported that the interfacial debonding is the
dominant failure mechanism of the metal matrix composite in the initial stage of fatigue life (Johnson,
1989) before other failure mechanisms, e.g. matrix cracking, prevail. Reduction of the static effective
stiffness due to imperfect interfaces has been studied extensively based on the models employing the in-
terfacial crack or thin interphasal layers. The results of these studies show that the overall stiffness of the
composite decreases gradually with the increase of interfacial imperfectness (Teng, 1992; Kim et al., 1995;
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Yuan et al., 1997). It is expected that the dynamic behavior would be more complicated than the static case
because of the frequency dependent interaction of elastic wave with the interfacial cracks.

In the nondestructive evaluation of composite materials, the ultrasonic wave introduced into the com-
posite is modified by the internal microstructure such as fiber shape, fiber arrangement and fiber-matrix
interface condition. However, most of the previous theoretical studies to evaluate the effective composite
properties assume the perfectly bonded interface. To better understand dynamic behaviors of the actual
composite, one needs to implement a theoretical model in which the realistic microstructures affecting the
wave propagation are taken into account. In this point of view, the interfacial debonding may be the first
important parameter to be included. Yang and Norris (1991) have analyzed the scattering of elastic waves
from the partially debonded elastic cylinder. They studied the change of scattering cross-section with re-
spect to the debonding angle as well as the low frequency Helmholtz resonance that can be excited when the
neck joining the matrix and the fiber is very small. Benveniste and Aboudi (1984) used the semi-analytical
cell method to predict the decrease of wave speed in a composite with fiber-matrix debonding. Most re-
cently Liu and Kriz (1997) studied multiple scattering of shear wave and effective properties of a composite
with aligned interfacial cracks. They reported anomalous jumps in shear modulus and corresponding sharp
peaks in attenuation.

In this paper, the effects of interfacial debonding on the propagation of antiplane shear wave in fiber-
reinforced composites are studied. A probabilistic approach based on the single scattering solution is
proposed to evaluate the dispersion and attenuation of the composite with randomly debonded fibers. The
analysis is performed for a representative fiber that describes probabilistically the randomness of the in-
terfacial crack. The average total cross-section of the representative fiber is obtained. The causal differential
method of Beltzer and Brauner (1985, 1986 and 1987) is then applied to calculate of the wave speed and
attenuation using the average total cross-section. The results are compared with those from the Waterman
and Truell (1961) and independent scatterer theory. The effects of crack size and distribution are illustrated
in numerical results for varying mean value and variance of the crack size.

2. Theory
2.1. Scattering analysis for a fiber with random interfacial crack

In order to predict the dynamic properties of a composite with debonded fibers it is required to analyze
the wave scattering by the multiple fibers with random interfacial cracks. The probabilistic multiple scat-
tering theory, for example, Bose and Mal (1973), can be applied for this purpose. As an alternative ap-
proach, the model based on the single scattering analysis can be used. In this approach a representative
scattering object is considered that reflects all characteristics of scatterer in probabilistic or deterministic
manners. For example, when the length and orientation of the crack are different from a fiber to the other,
these parameters in the representative scatterer are treated as random variables. As shown in Fig. 1, a fiber
with interfacial debonding is taken as a representative scattering object. The physical quantities associated
with the scattering are evaluated probabilistically by averaging them over the ranges of distributions.

Now consider a two-phase composite containing an elastic cylindrical fiber embedded in an infinite
medium. The shear modulus and mass density of the matrix are denoted by y; and p, and those of the fiber
by u, and p,. Both fiber and matrix are assumed to be isotropic and homogeneous. From now on, sub-
scripts 1 and 2 denote exterior and interior of the fiber, respectively. When the attenuation due to either
viscosity or incoherent scattering is present, the energy absorption can be accounted for using complex
shear modulus whose imaginary part becomes the loss modulus. It is assumed that each inclusion has a
crack at its interface with the host medium, and the crack size ¢ in subtending half angle and the crack
orientation angle 6, are different at each fiber as illustrated in Fig. 1. The orientation of the crack is
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(a)

Fig. 1. Antiplane shear wave propagation in fiber-reinforced composite with debonded interfaces: (a) wave propagation in a composite
with randomly debonded interface, (b) single representative fiber.

assumed to be equally probable in (—m,n). It is noted that under this assumption the effective medium
remains transversely isotropic.
Suppose a plane time-harmonic antiplane shear wave displacement normally incident to the fiber,

U™ = Aexp (ik;rcos0), (1)

where k(= w/c;) denotes the wave number and ¢;(= (4,/p,)"/?) the shear wave speed in the matrix. The
time dependence, exp(—iwt) is suppressed for brevity. An equivalent scattering problem is considered,
which is obtained by rotating the coordinate system to have the crack orientation aligned with the rotated
x-axis as shown in Fig. 2. When the incident angle changes to —0,, the incident wave in the rotated co-
ordinate system is written as

u'™ = Aexplik;rcos (0 + 0,)]. (2)

The scattered field can be represented as a sum of the scattered fields in the absence and in the presence of
the interfacial crack. The interior field can also be represented in the same way:

u = u™ + ui") + ugl), (3)

Uy = u§0) + ugl). (4)
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S

Fig. 2. Equivalent scattering problems.

The additional fields due to the presence of the interfacial crack can be split further into the symmetric and
antisymmetric fields (Yang and Norris, 1991),

1
Y =l +ully, (5)

These fields are expanded in terms of eigenfunctions in cylindrical coordinate system, and then the sym-
metric and antisymmetric parts of the scattered field are

u

uyy =Y ESHD (ki) cosnd, (6)
n=0
ull) = ZEQA Y (kyr) sin n0), (7)

n=

where E(5®) means coefficients for the additional scattered field, thus are functions of 0, and J, and HV (x)
denotes the first kind Hankel function of order #. The solution procedure is summarized in Appendix A.

In order to calculate the wave speed and attenuation of the effective medium using the causal differential
method, the total cross-section (scattering plus absorption cross-sections) of the representative fiber
is needed. The ordinary total cross-section of a scattering object in the lossless elastic medium can be
described in terms of the scattering coefficients according to the forward scattering (or optical theorem)
(Morse and Feshbach, 1953). When the scattering happens in the lossy medium, the total scattering is
defined as a quantity proportional to the total power abstracted due to the scattering as well as the ab-
sorption of the lossy host medium. It is noted that the ordinary forward scattering theorem for the lossless
medium is still valid for the scattering in the lossy medium (Bohren and Gilra, 1979) if the absorption of the
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medium is taken into account with complex wave number. Therefore, the total cross-section (') is given

by

#(0) = —Re| £70)], 8)

where F(0) denotes the directional scattering amplitude. In this work, the total cross-section is represented
by the scattering coefficients as:

7 () = —%Re{k;‘ (fjm( —i)' + Ef + i(EfP +EM) (- i)”) } 9)

If the orientation angle and the size of the individual crack are statistically independent, the joint
probability density function becomes,

(0o, 0) = p(0o)p(9). (10)

Moreover, if the crack orientation angle is equally probable in (—=, ), the mean value of a random
function (f) is calculated with probability density functions of random variables as:

70) =52 [ s, (1)

() = / " F(0)p(6)do. (12)

Therefore, the average total cross-section is derived as:
4 = o - o
(o)) = WRe{kl_l (ZA,,( —1)" () + Y ((ED) + (EM)) (— ) > } (13)
n=0 n=1

where the average scattering coefficients (£ can be obtained from the average expansion coefficients
(ﬁf,f>’<A>) of crack opening displacement (COD) using Eq. (12),

(E5) = —%J‘Sﬁ;‘j“) /Onp(5)5l?§s)(5) ds, (14)
(83) = =285 [ popr (n0) 5) 0 (15)
(88 =~ 2B S [ popsn o) )5 (16)

m=1

To find the orientation average of COD expansion coefficients, the systems of the linear equations in
Egs. (A.14) and (A.19) are averaged over the crack orientation. Then, one has

I = B ,
NéS) = zénljo(kza)BO + pz:]:;sznil (pé)']p(kza)a (17)

NEW =0, m#0. (18)

The mean antisymmetric COD expansion coefficients vanish (Bff) = 0) and thus only the symmetric part
remains. Moreover, it is interesting to note that only monopole term remains as the excitation field on the
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average, which holds the effective medium to be transversely isotropic. Consequently, the average total
cross-section is reduced as:

(" (@) = = | { ZA +(E)) (=) } (19)

2.2. Determination of wave speed and attenuation

Among the theoretical methods to predict the wave propagation in inhomogeneous media, the causal
differential method has been known to provide reasonable results up to the high frequency region regardless
of comprising constituents of a composite (Kim, 1999). This method is similar to the differential effective
medium approximation used widely for the estimation of static effective moduli (Norris, 1985). In the
dynamic problem, the attenuation is obtained using the differential scheme and then the wave speed
is calculated using the Kramers—Kronig relationship between wave speed and attenuation (Beltzer and
Brauner, 1985, 1986, 1987). For the low concentration of cracks in a homogeneous isotropic solid, the
attenuation and the wave speed have been analyzed by using the Kramers—Kronig relation without con-
sidering the multiple scattering effects (Angel and Achenbach, 1991; Zhang and Gross, 1993).

In the causal differential method, the multiple scattering effects are considered approximately by accu-
mulating the sufficiently small differential increment of single scattering effect. The attenuation is calculated
from the scattering by a newly added differential increment of the inclusion phase into the medium ho-
mogenized one step before. A self-consistent type homogenization is carried out assuming the attenuation
of this new medium as the sum of those in matrix and newly generated by the scattering as:

AVZ

2. (20)

where Av, represents the increment in volume fraction, ¥ the volume of inclusion, and (') the total cross-
section of the associated scattering process. Once the attenuation of this new medium is determined, the
wave speed is predicted resorting to the following form of the Kramers—Kronig relation among others
(Weaver and Pao, 1981)
1 1 2w2P * w(Q)dQ
) 0 = A PP — o)
where ¢(0) is the wave speed in static limit.
The procedure for numerical calculation of the above integral is summarized. When the wave speed in
the geometric limit is known, the method of Angel and Achenbach (1991) can be employed. If it is not the
case just like the present problem it is necessary to start from the wave speed in static limit. The principal
value integral in Eq. (21) will be split into three parts,

o0 O—m o+ o0 o Q dQ
PA QZ(QZ {/ / /+ }92(222)_ (,02), &, W — 0. (22)

The singularity in the first integral can be removed by assuming the attenuation and its first derivative
vanishes at w = 0. The second integral is transformed into the integrable form by the above assumption and
the change of variable, that is,

/w+m %(Q2)dQ _ /“’ dz < o(w +z2) B o(w —z) ) (23)
o-w L@ -0 o 2\ (0+2Quw+2) (0—2)°Qw-2)

In the last integral, it is assumed that there exists a large number K such that «(w) is nearly constant for all
values of w greater than K. Then the integration is approximated as (Angel and Achenbach, 1991)

a(vy + Avy) = a(vy) +

(1)
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3. Results and discussion

The material considered in numerical calculation is SiC/Al composite. The shear modulus and mass
density of the matrix are u; = 38.0 GPa, p, = 2720 kg/m® and those of the fiber are u, = 188.7 GPa,
p, = 3200 kg/m>. The fiber volume fraction is 40% otherwise specified. Numerical results are presented by
the effective wave speed normalized by the wave speed of the matrix and the attenuation in o/k;. The
probability density functions for the crack size used in the numerical calculations are uniform and trun-
cated Gaussian distributions that are defined in a finite range of random variable (crack size). The definition
and mathematical expression of the truncated Gaussian distribution are given in Appendix B.

In Fig. 3, the wave speed and attenuation calculated with different volume increments are shown for
mean debonding angle 47/3 and variance 1. Excellent convergences for both wave speed and attenuation
are observed. No pronounced difference is found when the volume increment is smaller than Av, = 0.05.
Therefore, the volume increments are set as values under 0.05 in the following calculations. It is noted from
the figures that the multiple scattering process smoothes out the undulation of wave speed and attenuation
at higher frequencies and diminishes the attenuation at around the resonance frequency (Beltzer and
Brauner, 1987).

In Fig. 4, the wave speed and attenuation predicted by the present method are compared with those
predicted using the Waterman—Truell (WT) theory (1963) and the theory for independent scatterer. The
fiber volume fraction is 15%. The probabilistic total cross-section for the single representative fiber is
utilized in the WT formula. The independent scatterer theory is implemented by taking just single step
of volume increment (Av, = 0.15). Due to the low volume fraction, the theory of independent scatterer
predicts results that are quite close to those of the present differential theory with multiple steps. On the
contrary, it is noted that the wave speed from the application of WT theory deviates from others. At-
tenuations from different theories fall in qualitatively similar range except that WT theory predicts higher
attenuation when the debonding angle is large. Similar comparisons have been reported by Beltzer and
Brauner (1987).

The changes of wave speed and attenuation spectra for different debonding angles are shown in Fig. 5.
Here, the variance of the debonding angle is assumed to be zero to observe the effect of solely the debonding
angle on the wave speed and attenuation. The dynamic nature of the SiC/Al composite with the perfect
fiber—matrix interface appears weakly dispersive. However, the presence of the interfacial debonding alters
significantly the dynamic properties of the material. In contrast to the gradual degradation of static stiff-
ness, the dispersion spectra for the different debonding angles are very complicated. When the fibers are
much disengaged (26 > 37/2), the Helmholtz resonance is strongly excited and influences both dispersion
and attenuation in narrow frequency band around kja = 0.4. It can be observed that the interfacial de-
bonding influences mainly the attenuation in the low frequency region as shown in Fig. 5(b).

In Fig. 6, the variations of the normalized wave speed and attenuation are depicted as functions of the
debonding angle (25) for the different frequencies. The quasi-static (kja = 0.05) wave speed decreases
monotonically as the debonding angle increases. However, in the dynamic region, when the crack size
exceeds a certain degree of angle depending on the frequency, the wave speed does not simply decrease. It is
observed in Figs. 5 and 6, that the wave speeds at higher frequencies have their maxima around 20 = 7. On
the other hand, the attenuations in this regime have their first maxima at around 2ad// = 0.4. This implies
that the wave can detect best the effect of debonding when the crack length is approximately half of the
wavelength. As the crack length becomes larger than the wavelength the wave can only see the part of the
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Fig. 3. Convergence of numerical integration examined with different increments of inclusion volume (26 = 120° and 62 = 1): (a) wave
speed, and (b) attenuation.

fiber so that it can sense only perfect bonding or complete debonding rather than the partial debonding. It
explains the reason that the attenuation in the high frequency limit is bounded by the attenuations of
perfectly bonded and completely debonded fiber.

The normalized wave speed and attenuation are shown in Fig. 7 for the mean debonding angle 26 = =
with different variances. The crack size is distributed in the truncated Gaussian with variances ag =0, 0.05,
0.5, 1.04 and 2.09, and uniform over 0 <20 < 2% and aé = 3.1. The size distribution causes changes of the
wave speed in the whole range of the frequency whereas its effects on the attenuation are confined in the low
frequency range centered around kja ~ 1. It shifts the Helmholtz resonance frequency. The normalized
wave speed and attenuation for the mean debonding angle 25 = 7/3 for varying variance o2 = 2, 1, 0.2 are
shown in Fig. 8. The higher variances gives rise to higher attenuation in low frequency region, while the
lower variance causes slightly higher attenuation in high frequency region. In Fig. 9, those for the mean
debonding angle 26 = 57/3 are shown. The variance of crack size mainly controls the sharpness of the



J.-Y. Kim | International Journal of Solids and Structures 38 (2001) 7121-7137

(a)
1.4

1

1.3

Present model
Independent scatters

25=n, 5,°=0.5

7129

....... Waterman-Truell

1.2

11

1.0

09} 8

Normalized wave speed, ¢ /c

085 2 4 6 8 10

Normalized frequency, k,a

0.3 T T T T " T
—— Present model

| ------ Independent scatterers
....... Waterman-Truell

1

26=n, 602=045

02r & |

Normalized wave speed, ce/c

Yo 2 4 6 8 10
Normalized frequency, k,a

Fig. 4. Comparison of wave speeds with those from other theories for 25 = 90° and 62 = 0.5: (a) wave speed, and (b) attenuation.

resonance. Two wave speeds for 63 = 0 and 0.2 are hardly distinguished. It is noted that the low frequency
resonance still affects very much the average response of the statistical medium via the variance of the crack
size. It is found from these results that the attenuation is quite sensitive to the variance of the crack size.

4. Summary

A simple analytic model is presented to calculate the shear wave propagation in the unidirectional fiber-
reinforced composite containing random interfacial cracks. The randomness of crack size and orientation
angle is modeled with different probability density functions. The coherent attenuation and effective wave
speed are predicted using the causal differential method with the average total cross-section of the repre-
sentative fiber for the random interfacial crack. Numerical results exhibit that the existence of the interfacial
cracks modify significantly the wave speed in the whole range of frequency and the attenuation in the
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Fig. 5. Variations of wave speed and attenuation versus debonding angle: (a) normalized wave speed, (b) normalized attenuation.

frequency range of kja < 3. The variance of crack size affects in different way the wave speed and attenu-
ation depending on the size of the crack. The attenuation is found to be very sensitive to the variance of the
crack size.
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Appendix A. Scattering from a single debonded fiber

For the normally incident shear wave of Eq. (2), the scattered and interior displacement fields in the
absence of the interfacial crack can be written in terms of eigenfunctions in cylindrical coordinate system
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o]

' =" 4,H" (kyr)cosn (0 + 0,), (A1)
n=0

uy = "B.J,(kar) cosn (0 + 0,), (A.2)
n=0

where J, (x) is the first kind Bessel functions of order n. The scattering coefficients for each partial wave can
be obtained by imposing the continuity conditions at the interface (Morse and Feshbach, 1953)

An -4 &nl
D

[Z],,(kla)J;l(kza) —J;(kla)Jn(kza)}, (A3)

n
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26,1
B,=A—" A4
nklaD,, ( )
where
D, = HW (kya)J,(kya) — ZH" (k1a)J (kaa), (A.5)
Hako
Z="—"==. A.6
,ulkl ( )

The symmetric and antisymmetric parts of the additional interior fields can also be written similarly to
the scattered ones (Egs. (6) and (7))
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n

uly = ZF(S)Jn (kyr) cosn,

n

”(22 = ZF(A)J,, (kor) sinn.

The boundary conditions at the interface, » = a are

0,10 0<0<n
M T AU®), 0<0<,
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6u1 auz

'ulazlqu’ 0<0<TE7 (AIO)
0 0
M%:;cz%:o, 0<0<0. (A.11)

Here, AU(0) is the dynamic COD that is analogous to that in the static problem.
For symmetric problem, the COD is expanded using the symmetric Chevyshev orthogonal polynomials
(Abramowitz and Stegun, 1965)

AUS(0) =3 BO65(0), (A12)
n=1

where
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¢\ (0) :2n1— [ cos {(2}1— 1)sin1(§)]. (A.13)

From Eqgs. (6) and (7), (A.1) and (A.2), and (A.7)-(A.12), the following system of linear equations for the
coefficients of the symmetric COD is obtained,

iggﬁ;s):zv,;sh m=1,273,... (A.14)
n=1
where
0 = T 55, il i RLl D s 900 ) (A13)
and
N® —iénlJ’(kza BO+Z 2 Jou-1(p3)J) (kra) cos pl. (A.16)

=1

Similarly, the antisymmetric COD coefficients can be expanded using the antisymmetric Chebyshev
polynomials,

AUA0) =D BN oM (0), (A.17)
n=1
where
o™ (0) = L (A.18)
" 2n o/ :
The system of linear equations for the coefficients of antisymmetric COD is obtained,
D OWBN =NM, m=1,23,... (A.19)
=1
where
> HIIJ kla J,(kza)
Z—Jzn@(s)Jzn,(pa), (A.20)

p=

and
:—Z sz,,(pa " (ka) sinpl,. (A.21)

(5) and QW) are independent of the
incident angle 0, while the ex01tat10n vectors NS and N are dependent on the incident angle. From the

As can be expected naturally, it is noted that the system matrices Q'

COD expansion coefficients ™), the scattering coefﬁments can be obtained as follows:
zZJ] (kza) S
ES = -2 5p08) A22
0 4 DO ﬁ] ) ( )
_ZJ, '(kya)
S 2
En = n D E sz 1 mé)ﬁm s (A23)
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BN = Zj/b“ E:bm (A.24)

n

Appendix B. Truncated Gaussian distribution

The truncated Gaussian distribution (Bendat and Piersol, 1986) can be used for the case that the domain
of the random variables is finite but still the distribution characteristic is quite similar to the ordinary
Gaussian distribution. To define the truncated Gaussian probability density function (PDF) one can start
with the ordinary Gaussian PDF defined over {—o0, 0},

_ expl—(x — /207
pix) = o \/n : (B.1)

where y, is the mean and o, is the standard deviation of the random variable x.
The truncated Gaussian PDF for a random variable x in a finite range {x;,x,} can be defined

_[=Cpi(x), x1<x<x
plx) = { =0, otherwise, (B.2)
where
1
(o — (B.3)
fxl pi(x)dx
Therefore,
2exp|—(x — )’ /202
plx) = [iﬂ )/Xil. (B.4)
ooV/2r [erf (2) — erf(15) |
where erf(z) is the error function defined as (Abramowitz and Stegun, 1965)
erf(z / 2 dt. B.5
=7 (B.5)
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